
darlang Documentation
Release 0.0.1

Andrew Comminos

Jun 14, 2018

Contents:

1 Basics 1
1.1 Declarations . 1
1.2 Binding . 1
1.3 Conditionals . 1
1.4 Example . 2

2 Types 3
2.1 Primitives . 3
2.2 Product types . 3
2.3 Disjoint unions . 3

3 Specialization 5
3.1 Specialization at work . 5

4 Quirks 7

5 Indices and tables 9

i

ii

CHAPTER 1

Basics

This document is very incomplete, perhaps some meaning can be derived from it.

1.1 Declarations

func(arg_1, arg_2, ..., arg_n) -> expr

All functions in darlang are implicitly typed. Both the argument types and the return value are derived through
unification by the callee and implementation, respectively.

1.2 Binding

id | expr; ...

Binding is the process of assigning an expression to a new identifier in the current scope. All references to the id on
the left hand side of the expression will be substituted with the associated expression.

1.3 Conditionals

{
case_1 : expr_1;
case_2 : expr_2;
...
case_n : expr_n;

* : expr_wildcard;
}

1

darlang Documentation, Release 0.0.1

Darlang uses a singular guard-like construct to provide control flow.

Cases are evaluated from top to bottom- the first true case expression will cause the associated expression to be
returned.

All branching constructs must have a “wildcard” case, to be executed when no cases are satisfied.

1.4 Example

Let’s get started with a program that computes the classic Euclidean algorithm.

euclid(a, b) ->
{
is(b, 0) : a;

* : euclid(b, mod(a, b))
}

main() -> euclid(15, 10)

2 Chapter 1. Basics

CHAPTER 2

Types

2.1 Primitives

2.2 Product types

2.3 Disjoint unions

3

darlang Documentation, Release 0.0.1

4 Chapter 2. Types

CHAPTER 3

Specialization

Specialization is the mechanism through which darlang provides parametric function polymorphism. It can be seen
as an analogue to implicitly-generated C++ templates, implementation-wise.

3.1 Specialization at work

Suppose the existence of an under-constrained function tuplify;

tuplify(a) -> (a, a)

Such a function can be observed to impose no constraints on the type of the argument a. Since the set of potential
types for tuplify is infinite, the darlang compiler skips code generation for it in the absence of invocations.

Consider, however, if we had the following invocations:

main() ->
ds | tuplify("hello");
is | tuplify(5);
0

Two specializations of tuplify are generated by the compiler- one with signature string -> (string, string), and one
with signature i64 -> (i64, i64). This reduces the need for runtime typing logic, reducing instruction count at the
expense of code size.

Note: Specializations of a function are populated by the darlang compiler by traversing the call graph starting from
top-level exports, which possess known types, and enumerating all required implementations.

IR is generated for each possible specialization of a function, each of which possess a unique symbol name derived
from the function’s name and its solved argument types.

5

darlang Documentation, Release 0.0.1

6 Chapter 3. Specialization

CHAPTER 4

Quirks

• All values of a recursive type are enforced to be heap allocated.

7

darlang Documentation, Release 0.0.1

8 Chapter 4. Quirks

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

9

	Basics
	Declarations
	Binding
	Conditionals
	Example

	Types
	Primitives
	Product types
	Disjoint unions

	Specialization
	Specialization at work

	Quirks
	Indices and tables

